Engineering Spin‐Orbit Interactions in Silicon Qubits at the Atomic‐Scale

Author:

Hsueh Yu‐Ling12ORCID,Keith Daniel13ORCID,Chung Yousun13ORCID,Gorman Samuel K.13ORCID,Kranz Ludwik13,Monir Serajum12ORCID,Kembrey Zachary2,Keizer Joris G.13ORCID,Rahman Rajib12ORCID,Simmons Michelle Y.13ORCID

Affiliation:

1. Silicon Quantum Computing Pty Ltd. Level 2, Newton Building, UNSW Sydney Kensington NSW 2052 Australia

2. School of Physics University of New South Wales Sydney NSW 2052 Australia

3. Centre of Excellence for Quantum Computation and Communication Technology School of Physics University of New South Wales Sydney NSW 2052 Australia

Abstract

AbstractSpin‐orbit interactions arise whenever the bulk inversion symmetry and/or structural inversion symmetry of a crystal is broken providing a bridge between a qubit's spin and orbital degree of freedom. While strong interactions can facilitate fast qubit operations by all‐electrical control, they also provide a mechanism to couple charge noise thereby limiting qubit lifetimes. Previously believed to be negligible in bulk silicon, recent silicon nano‐electronic devices have shown larger than bulk spin‐orbit coupling strengths from Dresselhaus and Rashba couplings. Here, it is shown that with precision placement of phosphorus atoms in silicon along the [110] direction (without inversion symmetry) or [111] direction (with inversion symmetry), a wide range of Dresselhaus and Rashba coupling strength can be achieved from zero to 1113 × 10−13eV‐cm. It is shown that with precision placement of phosphorus atoms, the local symmetry (C2v, D2d, and D3d) can be changed to engineer spin‐orbit interactions. Since spin‐orbit interactions affect both qubit operation and lifetimes, understanding their impact is essential for quantum processor design.

Funder

Centre of Excellence for Quantum Computation and Communication Technology, Australian Research Council

National Computational Infrastructure

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3