Tailoring the Weight of Surface and Intralayer Edge States to Control LUMO Energies

Author:

Finkelmeyer Sarah Jasmin12ORCID,Askins Erik J.34ORCID,Eichhorn Jonas5ORCID,Ghosh Soumik126ORCID,Siegmund Carmen7,Täuscher Eric7ORCID,Dellith Andrea1ORCID,Hupfer Maximilian L.1ORCID,Dellith Jan1ORCID,Ritter Uwe7ORCID,Strzalka Joseph8ORCID,Glusac Ksenija34ORCID,Schacher Felix H.5910ORCID,Presselt Martin1610ORCID

Affiliation:

1. Leibniz Institute of Photonic Technology (IPHT) Albert‐Einstein‐Str. 9 07745 Jena Germany

2. Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany

3. Department of Chemistry University of Illinois Chicago 845 West Taylor Street Chicago Illinois 60607 USA

4. Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S. Cass Avenue Lemont Illinois 60439 USA

5. Institute of Organic Chemistry and Macromolecular Chemistry (IOMC) Friedrich‐Schiller‐University Jena Humboldtstraße 10 07743 Jena Germany

6. sciclus GmbH & Co. KG Moritz‐von‐Rohr‐Str. 1a 07745 Jena Germany

7. Institute for Chemistry and Biotechnology Ilmenau University of Technology 98684 Ilmenau Germany

8. X‐Ray Science Division Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA

9. Jena Center for Soft Matter (JCSM) Friedrich‐Schiller‐University Jena Philosophenweg 7 07743 Jena Germany

10. Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany

Abstract

AbstractThe energies of the frontier molecular orbitals determine the optoelectronic properties in organic films, which are crucial for their application, and strongly depend on the morphology and supramolecular structure. The impact of the latter two properties on the electronic energy levels relies primarily on nearest‐neighbor interactions, which are difficult to study due to their nanoscale nature and heterogeneity. Here, an automated method is presented for fabricating thin films with a tailored ratio of surface to bulk sites and a controlled extension of domain edges, both of which are used to control nearest‐neighbor interactions. This method uses a Langmuir–Schaefer‐type rolling transfer of Langmuir layers (rtLL) to minimize flow during the deposition of rigid Langmuir layers composed of π‐conjugated molecules. Using UV–vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy, it is shown that the rtLL method advances the deposition of multi‐Langmuir layers and enables the production of films with defined morphology. The variation in nearest‐neighbor interactions is thus achieved and the resulting systematically tuned lowest unoccupied molecular orbital (LUMO) energies (determined via square‐wave voltammetry) enable the establishment of a model that functionally relates the LUMO energies to a morphological descriptor, allowing for the prediction of the range of accessible LUMO energies.

Funder

Deutsche Forschungsgemeinschaft

Argonne National Laboratory

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3