High‐Entropy Engineering of Cubic SiP with Metallic Conductivity for Fast and Durable Li‐Ion Batteries

Author:

Li Wenwu12,Wang Jeng‐Han3,Yang Lufeng45,Li Yanhong26,Yen Hung‐Yu3,Chen Jie45,He Lunhua57,Liu Zhiliang8,Yang Piaoping8,Guo Zaiping9,Liu Meilin1ORCID

Affiliation:

1. School of Materials Science & Engineering Georgia Institute of Technology Atlanta GA 30332 USA

2. School of Chemical Engineering Sungkyunkwan University (SKKU) Suwon 440–746 Republic of Korea

3. Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan

4. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

5. Spallation Neutron Source Science Center Dongguan 523803 China

6. Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518060 China

7. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

8. College of Material Sciences and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China

9. School of Chemical Engineering & Advanced Materials The University of Adelaide Adelaide SA 5005 Australia

Abstract

AbstractA cost‐effective, scalable ball milling process is employed to synthesize the InGeSiP3 compound with a cubic ZnS structure, aiming to address the sluggish reaction kinetics of Si‐based anodes for Lithium‐ion batteries. Experimental measurements and first‐principles calculations confirm that the synthesized InGeSiP3 exhibits significantly higher electronic conductivity, larger Li‐ion diffusivity, and greater tolerance to volume change than its parent phases InGe (or Si)P2 or In (or Ge, or Si)P. These improvements stem from its elevated configurational entropy. Multiple characterizations validate that InGeSiP3 undergoes a reversible Li‐storage mechanism that involves intercalation, followed by conversion and alloy reactions, resulting in a reversible capacity of 1733 mA h g−1 with an initial Coulombic efficiency of 90%. Moreover, the InGeSiP3‐based electrodes exhibit exceptional cycling stability, retaining an 1121 mA h g−1 capacity with a retention rate of ≈87% after 1500 cycles at 2000 mA g−1 and remarkable high‐rate capability, achieving 882 mA h g−1 at 10 000 mA g−1. Inspired by the distinctive characteristic of high entropy, the synthesis is extended to high entropy GaCu (or Zn)InGeSiP5, CuZnInGeSiP5, GaCuZnInGeSiP6, InGeSiP2S (or Se), and InGeSiPSSe. This endeavor overcomes the immiscibility of different metals and non‐metals, paving the way for the electrochemical energy storage application of high‐entropy silicon‐phosphides.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3