N‐Carbon‐Doped Binary Nanophase of Metal Oxide/Metal–Organic Framework for Extremely Sensitive and Selective Gas Response

Author:

Min Hyegi123,Kwon Ohchan45,Lee Jihyun1,Choi Eunji4,Kim Jihee1,Lee Nahyeon6,Eum Kiwon6,Lee Kyu Hyoung1,Kim Dae Woo4,Lee Wooyoung1ORCID

Affiliation:

1. Department of Materials Science and Engineering Yonsei University 50 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea

2. KIURI Institute Yonsei University 50 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea

3. Nick J. Holonyak Micro and Nanotechnology Laboratory University of Illinois at Urbana–Champaign Urbana IL 61801 USA

4. Department of Chemical and Biomolecular Engineering Yonsei University Yonsei‐ro 50, Seodaemun‐gu Seoul 03722 Republic of Korea

5. Department of Chemistry University of California Berkeley Berkeley CA 94720 USA

6. School of Chemical Engineering Soongsil University Seoul 06978 Republic of Korea

Abstract

AbstractMetal–organic frameworks (MOFs), which are highly ordered structures exhibiting sub‐nanometer porosity, possess significant potential for diverse gas applications. However, their inherent insulative properties limit their utility in electrochemical gas sensing. This investigation successfully modifies the electrical conductivity of zeolitic imidazolte framework‐8 (ZIF‐8) employing a straightforward surface oxidation methodology. A ZIF‐8 polycrystalline layer is applied on a wafer‐scale oxide substrate and subjects to thermal annealing at 300 °C under ambient air conditions, resulting in nanoscale oxide layers while preserving the fundamental properties of the ZIF‐8. Subsequent exposure to NO2 instigates the evolution of an electrically interconnected structure with the formation of electron‐rich dopants derived from the decomposition of nitrogen‐rich organic linkers. The N‐carbon‐hybridized ZnO/ZIF‐8 device demonstrates remarkable sensitivity (≈130 ppm−1) and extreme selectivity in NO2 gas detection with a lower detection limit of 0.63 ppb under 150 °C operating temperature, surpassing the performance of existing sensing materials. The exceptional performances result from the Debye length scale dimensionality of ZnO and the high affinity of ZIF‐8 to NO2. The methodology for manipulating MOF conductivity through surface oxidation holds the potential to accelerate the development of MOF‐hybridized conductive channels for a variety of electrical applications.

Funder

Ministry of Education

Ministry of Science and ICT, South Korea

Ministry of Trade, Industry and Energy

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3