Porous, Ultrathin PtAgBiTe Nanosheets for Direct Hydrazine Hydrate Fuel Cell Devices

Author:

Zhao Fengling1,Nie Siyang2,Wu Liang3,Yuan Qiang1ORCID,Wang Xun2

Affiliation:

1. State‐Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals College of Chemistry and Chemical Engineering Guizhou University Guiyang Guizhou Province 550025 P. R. China

2. Key Lab of Organic Optoelectronics & Molecular Engineering Tsinghua University Beijing 100084 P. R. China

3. School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China

Abstract

AbstractUltrathin 2D nanomaterials have attracted extensive attention due to their fascinating applications in sustainable and clean‐energy‐related devices, but obtaining ultrathin 2D multimetallic polycrystalline structures with large lateral dimensions remains a challenge. In this study, ultrathin 2D porous PtAgBiTe and PtBiTe polycrystalline nanosheets (PNSs) are obtained via a visible‐light‐photoinduced Bi2Te3‐nanosheet‐mediated route. The PtAgBiTe PNSs are assembled by sub‐5 nm grains with widths beyond 700 nm. Strain and ligand effects originating from the porous, curly polycrystalline structure endow the PtAgBiTe PNSs with robust hydrazine hydrate oxidation reaction activity. Theoretical research demonstrates that the modified Pt activates the N–H bonds in N2H4 during the reaction, and strong hybridization between Pt‐5d and N‐2p facilitates dehydrogenation while reducing energy consumption. The peak power densities of the PtAgBiTe PNSs in actual hydrazine‐O2/air fuel cell devices are boosted to 532.9/315.9 mW cm−2, while those of the commercial Pt/C are 394.7/157.9 mW cm−2. This work provides a strategy not only for preparing ultrathin multimetallic PNSs but also for finding promising electrocatalysts for actual hydrazine fuel cells.

Funder

National Natural Science Foundation of China

Xiamen University

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3