Supported Ruthenium Single‐Atom and Clustered Catalysts Outperform Benchmark Pt for Alkaline Hydrogen Evolution

Author:

Zhu Yanping1ORCID,Fan Ke1,Hsu Chia‐Shuo2,Chen Gao1,Chen Changsheng1,Liu Tiancheng1,Lin Zezhou1,She Sixuan1,Li Liuqing1,Zhou Hanmo1,Zhu Ye1,Chen Hao Ming234,Huang Haitao1ORCID

Affiliation:

1. Department of Applied Physics and Research Institute for Smart Energy The Hong Kong Polytechnic University Hong Kong 999077 China

2. Department of Chemistry National Taiwan University Taipei 106 Taiwan

3. National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan

4. Graduate Institute of Nanomedicine and Medical Engineering College of Biomedical Engineering Taipei Medical University Taipei 11031 Taiwan

Abstract

AbstractGuaranteeing satisfactory catalytic behavior while ensuring high metal utilization has become the problem that needs to be addressed when designing noble‐metal‐based catalysts for electrochemical reactions. Here, well‐dispersed ruthenium (Ru) based clusters with adjacent Ru single atoms (SAs) on layered sodium cobalt oxide (Ru/NC) are demonstrated as a superb electrocatalyst for alkaline HER. The Ru/NC catalyst demonstrates an activity increase by a factor of two relative to the commercial Pt/C. Operando characterizations in conjunction with density functional theory (DFT) simulations uncover the origin of the superior activity and establish a structure–performance relationship, that is, under HER condition, the real active species are Ru SAs and metallic Ru clusters supported on the NC substrate. The excellent alkaline HER activity of the Ru/NC catalyst can be understood by a spatially decoupled water dissociation and hydrogen desorption mechanism, where the NC substrate accelerates the water dissociation rate, and the generated H intermediates would then migrate to the Ru SAs or clusters and recombine to have H2 evolution. More importantly, comparing the two forms of Ru sites, it is the Ru cluster that dominates the HER activity.

Funder

Hong Kong Polytechnic University

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3