Anti‐Fatigue Hydrogel Electrolyte for All‐Flexible Zn‐Ion Batteries

Author:

Liu Qun1ORCID,Yu Zhenlu1,Zhuang Qiuna2,Kim Jang‐Kyo34,Kang Feiyu5,Zhang Biao1ORCID

Affiliation:

1. Department of Applied Physics and Research Institute for Smart Energy The Hong Kong Polytechnic University Hung Hom Hong Kong 999077 China

2. Laboratory for Advanced Interfacial Materials and Devices Institute of Textiles and Clothing The Hong Kong Polytechnic University Hung Hom Hong Kong 999077 China

3. Department of Mechanical Engineering Khalifa University P.O.Pox Abu Dhabi 127788 United Arab Emirates

4. School of Mechanical and Manufacturing Engineering University of New South Wales Sydney NSW 2052 Australia

5. Shenzhen Geim Graphene Center Institute of Materials Research Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China

Abstract

AbstractHydrogel electrolytes are widely explored in Zn metal batteries for application in wearable electronics. While extensive studies have been conducted on optimizing the chemical structure and boosting the tensile elasticity, the mechanical stability of the hydrogel under repeated deformation is largely overlooked, leading to unsatisfactory performance at large cycling capacity. This work systematically analyzes the compressive fatigue‐resistance properties of the hydrogel electrolyte, revealing the critical roles of the salt and copolymer matrix on crack initiation and propagation. It shows that, on the premise of homogeneous Zn deposition, an improved anti‐fatigue property is essential to achieve high‐capacity Zn metal anodes. The optimal Zn(ClO4)2‐polyacrylamide/chitosan hydrogel electrolyte (C‐PAMCS) exhibits an unprecedented lifespan of 1500 h for Zn//Zn cells at a current density of 10 mA cm−2 and a high areal capacity of 10 mAh cm−2. The potential application of C‐PAMCS is exemplified in all‐flexible Zn‐ion batteries enabled by a flexible current collector consisting of a Ag nanowires embedded elastomer. This study provides the rationale under hydrogel electrolyte engineering toward advanced Zn‐ion battereis and the application in flexible devices.

Funder

Hong Kong Polytechnic University

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3