Liquid Gallium‐Assisted Pyrolysis of MOF Affording CNT Non‐Hollow Frameworks in High Yields for High‐Performance Sodium‐Ion Battery Anode

Author:

Han Xu12,Cao Yongyong3,Liu Ya‐Yuan1,Li Cong12,Geng Hongbo4,Gu Hongwei1,Braunstein Pierre5,Lang Jian‐Ping12ORCID

Affiliation:

1. College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China

2. State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China

3. College of Biological Chemical Science and Engineering Jiaxing University Jiaxing 314001 P. R. China

4. School of Materials Engineering Changshu Institute of Technology Changshu 215500 P. R. China

5. University of Strasbourg – CNRS Institute of Chemistry (UMR 7177 CNRS) 4 rue Blaise Pascal‐CS Strasbourg 67000 France

Abstract

AbstractCarbon materials have great potential for applications in energy, biology, and environment due to their excellent chemical and physical properties. Their preparation by carbonization methods encounters limitations and the carbon loss during pyrolysis in the form of gaseous molecules results in low yield of carbon materials. Herein a low‐energy (600 °C) and high‐yield (82 wt.%) carbonization strategy is developed using liquid gallium‐assisted pyrolysis of metal‐organic frameworks (MOFs) affording the N‐doped carbon nanotube (CNT) non‐hollow frameworks encapsulating Co nanoparticles. The liquid gallium layer offers protection against air, promotes heat transfer, and limits the escape of small carbonaceous gaseous molecules, which greatly improve the yields of the pyrolysis reaction. Experimental and theoretical results reveal that the synergistic interaction between CNTs and N/O‐containing groups gives a non‐hollow framework composed of N/O‐enriched and open CNTs (NOCNTF‐15, 15 denotes the 15 mm thickness of the liquid gallium layer during the pyrolysis) with high specific capacity (185 mAh g−1 at 10 A g−1) and ultra‐stable cyclability (stable operation at 10 A g−1 and 50 °C for 20 000 cycles). This study provides a unique approach to carbonization that facilitates the practical application of low‐cost CNTs and other MOFs‐derived carbon materials in high‐performance sodium‐ion batteries (SIBs).

Funder

Collaborative Innovation Center of Suzhou Nano Science and Technology

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3