Affiliation:
1. School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
Abstract
AbstractThe electronic structure of transition metal complexes can be modulated by replacing partial ion of complexes to obtain tuned intrinsic oxygen reduction reaction (ORR) or oxygen evolution reaction (OER) electrocatalytic activity. However, the anion‐modulated transition metal complexes ORR activity of is still unsatisfactory, and the construction of hetero‐anionic structure remains challenging. Herein, an atomic doping strategy is presented to prepare the CuCo2O4‐xSx/NC‐2 (CCSO/NC‐2) as electrocatalysts, the structrual characterization results favorably demonstrate the partial substitution of S atoms for O in CCSO/NC‐2, which shows excellent catalytic performance and durability for OER and ORR in 0.1 m KOH. In addition, the catalyst assembled Zinc–air battery with an open circuit potential of 1.43 V maintains performance after 300 h of cyclic stability. Theoretical calculations and differential charges illustrate that S doping optimizes the reaction kinetics and promotes electron redistribution. The superior performance of CCSO/NC‐2 catalysis is mainly due to its unique S modulation of the electronic structure of the main body. The introduction of S promotes CoO covalency and constructs a fast electron transport channel, thus optimizing the adsorption degree of active site Co to the reaction intermediates.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献