Enhanced Hot‐Phonon Bottleneck Effect on Slowing Hot Carrier Cooling in Metal Halide Perovskite Quantum Dots with Alloyed A‐Site

Author:

Li Hua1,Wang Qing2,Oteki Yusuke3,Ding Chao14ORCID,Liu Dong1,Guo Yao5,Li Yusheng1,Wei Yuyao1,Wang Dandan1,Yang Yongge1,Masuda Taizo16,Chen Mengmeng1,Zhang Zheng1,Sogabe Tomah1,Hayase Shuzi1,Okada Yoshitaka3,Iikubo Satoshi2,Shen Qing1ORCID

Affiliation:

1. Faculty of Informatics and Engineering The University of Electro‐Communications 1‐5‐1 Chofugaoka Chofu Tokyo 182–8585 Japan

2. Department of Advanced Materials Science and Engineering Faculty of Engineering Sciences Kyushu University Kasuga Fukuoka 816–8580 Japan

3. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo 4‐6‐1 Komaba Meguro Tokyo 153–8904 Japan

4. Institute of New Energy and Low‐Carbon Technology Sichuan University Chengdu 610065 China

5. Department of Materials Science and Engineering Anyang Institute of Technology Anyang 455000 China

6. CN development division Toyota Motor Corporation Susono Shizuoka 410–1193 Japan

Abstract

AbstractA deep understanding of the effect of the A‐site cation cross‐exchange on the hot‐carrier relaxation dynamics in perovskite quantum dots (PQDs) has profound implications on the further development of disruptive photovoltaic technologies. In this study, the hot carrier cooling kinetics of pure FAPbI3 (FA+, CH(NH2)2+), MAPbI3 (MA+, CH3NH3++), CsPbI3 (Cs+, Cesium) and alloyed FA0.5MA0.5PbI3, FA0.5Cs0.5PbI3, and MA0.5Cs0.5PbI3 QDs are investigated using ultrafast transient absorption (TA) spectroscopy. The lifetimes of the initial fast cooling stage (<1 ps) of all the organic cation‐containing PQDs are shorter than those of the CsPbI3 QDs, as verified by the electron‐phonon coupling strength extracted from the temperature‐dependent photoluminescence spectra. The lifetimes of the slow cooling stage of the alloyed PQDs are longer under illumination greater than 1 sun, which is ascribed to the introduction of co‐vibrational optical phonon modes in the alloyed PQDs. This facilitated efficient acoustic phonon upconversion and enhanced the hot‐phonon bottleneck effect, as demonstrated by first‐principles calculations.

Funder

Japan Science and Technology Agency

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3