Affiliation:
1. Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 102206 China
2. CAS Key Laboratory of Bio‐Inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
Abstract
AbstractSelf‐propulsion of droplets in a controlled and long path at a high‐speed is crucial for organic synthesis, pathological diagnosis and programable lab‐on‐a‐chip. To date, extensive efforts have been made to achieve droplet self‐propulsion by asymmetric gradient, yet, existing structural, chemical, or charge density gradients can only last for a while (<50 mm). Here, this work designs a symmetrical waved alternating potential (WAP) on a superhydrophobic surface to charge or discharge the droplets during the transport process. By deeply studying the motion mechanisms for neutral droplets and charged droplets, the circularly on/discharged droplets achieve the infinite self‐propulsion (>1000 mm) with an ultrahigh velocity of meters per second. In addition, after permutation and combination of two motion styles of the droplets, it can be competent for more interesting work, such as liquid diode and liquid logic gate. Being assembled into a microfluidic chip, the strategy would be applied in chemical synthesis, cell culture, and diagnostic kits.
Funder
National Natural Science Foundation of China
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献