Multifunctional Flexible Sensor Based on PU‐TA@MXene Janus Architecture for Selective Direction Recognition

Author:

Bai Ju1,Gu Wen1,Bai Yuanyuan1,Li Yue1,Yang Lin1,Fu Lei1,Li Shengzhao1,Li Tie12ORCID,Zhang Ting1ORCID

Affiliation:

1. i‐Lab Suzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO) Chinese Academy of Sciences (CAS) 398 Ruoshui Road Suzhou 215123 P. R. China

2. Jiangxi Institute of Nanotechnology Economic and Technological Development Zone 278 Luozhu Road Xiaolan, Nanchang 330200 China

Abstract

AbstractMultifunctional selectivity and mechanical properties are always a focus of attention in the field of flexible sensors. In particular, the construction of biomimetic architecture for sensing materials can endow the fabricated sensors with intrinsic response features and extra‐derived functions. Here, inspired by the asymmetric structural features of human skin, a novel tannic acid (TA)‐modified MXene‐polyurethane film with a bionic Janus architecture is proposed, which is prepared by gravity‐driven self‐assembly for the gradient dispersion of 2D TA@MXene nanosheets into a PU network. This obtained film reveals strong mechanical properties of a superior elongation at a break of 2056.67% and an ultimate tensile strength of 50.78 MPa with self‐healing performance. Moreover, the Janus architecture can lead to a selective multifunctional response of flexible sensors to directional bending, pressure, and stretching. Combined with a machine learning module, the sensor is endowed with high recognition rates for force detection (96.1%). Meanwhile, direction identification in rescue operations and human movement monitoring can be realized by this sensor. This work offers essential research value and practical significance for the material structures, mechanical properties, and application platforms of flexible sensors.

Funder

National Natural Science Foundation of China

Foundation Research Project of Jiangsu Province

Suzhou Key Industrial Technology Innovation Project

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3