Establishing Multiple‐Order Built‐In Electric Fields Within Heterojunctions to Achieve Photocarrier Spatial Separation

Author:

Xue Sikang12,Tang Hao1,Shen Min1,Liang Xiaocong1,Li Xiaoyan1,Xing Wandong1ORCID,Yang Can1,Yu Zhiyang1ORCID

Affiliation:

1. State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China

2. Fujian Science & Technology Innovation Laboratory for Chemical Engineering of China College of Chemical Engineering Fuzhou University Quanzhou 362114 P. R. China

Abstract

AbstractHybridizing two heterocomponents to construct a built‐in electric field (BIEF) at the interface represents a significant strategy for facilitating charge separation in carbon dioxide (CO2)‐photoreduction. However, the unidirectional nature of BIEFs formed by various low‐dimensional materials poses challenges in adequately segregating the photogenerated carriers produced in bulk. In this study, leveraging zinc oxide (ZnO) nanodisks, a sulfurization reaction is employed to fabricate Z‐scheme ZnO/zinc sulfide (ZnS) heterojunctions featuring a multiple‐order BIEF. These heterojunctions reveal distinctive interfacial structures characterized by two semicoherent phase boundaries. The cathodoluminescence 2D maps and density functional theory calculation results demonstrate that the direction of the multiple‐order BIEF spans from ZnS to ZnO. This directional alignment significantly fosters the spatial separation of photogenerated electrons and holes within ZnS nanoparticles and enhances CO2‐to‐carbon monoxide photoreduction performance (3811.7 µmol h−1 g−1). The findings present a novel pathway for structurally designing BIEFs within heterojunctions, while providing fresh insights into the migratory behavior of photogenerated carriers across interfaces.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3