Affiliation:
1. Department of Physics State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (MOE) Fudan University Shanghai 200438 China
2. Department of Electrical and Computer Engineering National University of Singapore Singapore 117583 Singapore
3. Graduate School of China Academy of Engineering Physics Beijing 100193 China
Abstract
AbstractHeat management is crucial for state‐of‐the‐art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working‐temperature ranges, and the need for manual intervention, which remain long‐term and tricky obstacles for the most advanced self‐adaptive metamaterials. To surmount these barriers, heat‐enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on‐demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献