Exciton Dissociation into Charge Carriers in Porphyrinic Metal‐Organic Frameworks for Light‐Assisted Li‐O2 Batteries

Author:

Wen Bo1,Huang Yaohui1,Jiang Zhuoliang1,Wang Yuzhe1,Hua Weibo2,Indris Sylvio34,Li Fujun15ORCID

Affiliation:

1. State Key Laboratory of Advanced Chemical Power SourcesFrontiers Science Center for New Organic Matter Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China

2. School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an Shanxi 710049 China

3. Institute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany

4. Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE) Université Mohammed VI Polytechnic (UM6P) Ben Guerir 43150 Morocco

5. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China

Abstract

AbstractLight‐assisted Li‐O2 batteries exhibit a high round‐trip efficiency attributable to the assistance of light‐generated electrons and holes in oxygen reduction and evolution reactions. Nonetheless, the excitonic effect arising from Coulomb interaction between electrons and holes impedes carrier separation, thus hindering efficient utilization of photo‐energy. Herein, porphyrinic metal‐organic frameworks with (Fe2Ni)O(COO)6 clusters are used as photocathodes to accelerate exciton dissociation into charge carriers for light‐assisted Li‐O2 batteries. The coupling of Ni 3d and Fe 3d orbitals boosts ligand‐to‐metal cluster charge transfer, and hence drives exciton dissociation and activates O2 for superoxide (O2) radicals, rather than singlet oxygen (1O2) under photoexcitation. These enable the light‐assisted Li‐O2 batteries with a low total overvoltage of 0.28 V and round‐trip efficiency of 92% under light irradiation of 100 mW cm−2. This work highlights the excitonic effect in photoelectrochemical processes and provides insights into photocathode design for light‐assisted Li‐O2 batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3