Simultaneous Enhancement of Efficiency and Operational‐Stability of Mesoscopic Perovskite Solar Cells via Interfacial Toughening

Author:

Yang In Seok1,Dai Zhenghong1,Ranka Anush1,Chen Du23,Zhu Kai4,Berry Joseph J.56,Guo Peijun23,Padture Nitin P.1ORCID

Affiliation:

1. School of Engineering Brown University Providence RI 02912 USA

2. Department of Chemical and Environmental Engineering Yale University New Haven CT 06520 USA

3. Energy Sciences Institute Yale University West Haven CT 06516 USA

4. Chemistry and Nanoscience Center National Renewable Energy Laboratory Golden CO 80401 USA

5. Materials Science Center National Renewable Energy Laboratory Golden CO 80401 USA

6. Department of Physics University of Colorado Boulder CO 80309 USA

Abstract

AbstractThe combined effects of compact TiO2 (c‐TiO2) electron‐transport layer (ETL) are investigated without and with mesoscopic TiO2 (m‐TiO2) on top, and without and with an iodine‐terminated silane self‐assembled monolayer (SAM), on the mechanical behavior, opto–electronic properties, photovoltaic (PV) performance, and operational‐stability of solar cells based on metal‐halide perovskites (MHPs). The interfacial toughness increases almost threefold in going from c‐TiO2 without SAM to m‐TiO2 with SAM. This is attributed to the synergistic effect of the m‐TiO2/MHP nanocomposite at the interface and the enhanced adhesion afforded by the iodine‐terminated silane SAM. The combination of m‐TiO2 and SAM also offers a significant beneficial effect on the photocarriers extraction at the ETL/MHP interface, resulting in perovskite solar cells (PSCs) with power‐conversion efficiency (PCE) of over 24% and 20% for 0.1 and 1 cm2 active areas, respectively. These PSCs also have exceptionally long operational‐stability lives: extrapolated T80 (duration at 80% initial PCE retained) is ≈18 000 and 10 000 h for 0.1 and 1 cm2 active areas, respectively. Postmortem characterization and analyses of the operational‐stability‐tested PSCs are performed to elucidate the possible mechanisms responsible for the long operational‐stability.

Funder

U.S. Department of Energy

National Science Foundation

Office of Naval Research Global

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3