Enriched Oxygen Coverage Localized within Ir Atomic Grids for Enhanced Oxygen Evolution Electrocatalysis

Author:

Lin Hao Yang1,Yang Qian Qian1,Lin Miao Yu1,Xu Hao Guan1,Tang Xuan2,Fu Huai Qin3,Wu Haoran4,Zhu Minghui4,Zhou Lihui2,Yuan Hai Yang1,Dai Sheng2,Liu Peng Fei1,Yang Hua Gui1ORCID

Affiliation:

1. Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China

2. Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 China

3. Centre for Catalysis and Clean Energy Gold Coast Campus Griffith University Gold Coast QLD 4222 Australia

4. State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 China

Abstract

AbstractInefficient active site utilization of oxygen evolution reaction (OER) catalysts have limited the energy efficiency of proton exchange membrane (PEM) water electrolysis. Here, an atomic grid structure is demonstrated composed of high‐density Ir sites (≈10 atoms per nm2) on reactive MnO2–x support which mediates oxygen coverage‐enhanced OER process. Experimental characterizations verify the low‐valent Mn species with decreased oxygen coordination in MnO2–x exert a pivotal impact in the enriched oxygen coverage on the surface during OER process, and the distributed Ir atomic grids, where highly electrophilic Ir─O(II‐δ)− bonds proceed rapidly, render intense nucleophilic attack of oxygen radicals. Thereby, this metal‐support cooperation achieves ultra‐low overpotentials of 166 mV at 10 mA cm−2 and 283 mV at 500 mA cm−2, together with a striking mass activity which is 380 times higher than commercial IrO2 at 1.53 V. Moreover, its high OER performance also markedly surpasses the commercial Ir black catalyst in PEM electrolyzers with long‐term stability.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3