Control of Charge‐Spin Interconversion in van der Waals Heterostructures with Chiral Charge Density Waves

Author:

Chi Zhendong1ORCID,Lee Seungjun2ORCID,Yang Haozhe1ORCID,Dolan Eoin1,Safeer C. K.13ORCID,Ingla‐Aynés Josep1ORCID,Herling Franz1ORCID,Ontoso Nerea1,Martín‐García Beatriz14ORCID,Gobbi Marco45ORCID,Low Tony26ORCID,Hueso Luis E.14ORCID,Casanova Fèlix14ORCID

Affiliation:

1. CIC nanoGUNE BRTA Donostia‐San Sebastián 20018 Basque Country Spain

2. Department of Electrical and Computer Engineering University of Minnesota Minneapolis MN 55455 USA

3. Department of Physics Clarendon Laboratory University of Oxford Oxford OX1 3PU UK

4. IKERBASQUE Basque Foundation for Science Bilbao 48009 Basque Country Spain

5. Centro de Física de Materiales (CSIC‐EHU/UPV) and Materials Physics Center (MPC) Donostia‐San Sebastián 20018 Basque Country Spain

6. Department of Physics University of Minnesota Minneapolis MN 55455 USA

Abstract

AbstractA charge density wave (CDW) represents an exotic state in which electrons are arranged in a long‐range ordered pattern in low‐dimensional materials. Although the understanding of the fundamental character of CDW is enriched after extensive studies, its practical application remains limited. Here, an unprecedented demonstration of a tunable charge‐spin interconversion (CSI) in graphene/1T‐TaS2 van der Waals heterostructures is shown by manipulating the distinct CDW phases in 1T‐TaS2. Whereas CSI from spins polarized in all three directions is observed in the heterostructure when the CDW phase does not show commensurability, the output of one of the components disappears, and the other two are enhanced when the CDW phase becomes commensurate. The experimental observation is supported by first‐principles calculations, which evidence that chiral CDW multidomains in the heterostructure are at the origin of the switching of CSI. The results uncover a new approach for on‐demand CSI in low‐dimensional systems, paving the way for advanced spin‐orbitronic devices.

Funder

National Science Foundation

National Research Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3