Simultaneous Catalytic Acceleration of White Phosphorus Polymerization and Red Phosphorus Potassiation for High‐Performance Potassium‐Ion Batteries

Author:

Yang Hai1,He Fuxiang23,Liu Fanfan1,Sun Zhefei4,Shao Yu5,He Lixin23,Zhang Qiaobao4,Yu Yan16ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) CAS Key Laboratory of Materials for Energy Conversion University of Science and Technology of China Hefei Anhui 230026 China

2. Key Laboratory of Quantum Information, University of Science and Technology of China Hefei Anhui 230026 China

3. Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Hefei 230026 China

4. State Key Laboratory of Physical Chemistry of Solid Surfaces College of Materials Xiamen University Xiamen Fujian 361005 China

5. Jiujiang DeFu Technology Co. Ltd Jiujiang Jiangxi 332000 China

6. National Synchrotron Radiation Laboratory Hefei Anhui 230026 China

Abstract

AbstractRed phosphorus (P) as an anode material of potassium‐ion batteries possesses ultra‐high theoretical specific capacity (1154 mAh g−1). However, owing to residual white P during the preparation and sluggish kinetics of K‐P alloying limit its practical application. Seeking an efficient catalyst to address the above problems is crucial for the secure preparation of red P anode with high performance. Herein, through the analysis of the activation energies in white P polymerization, it is revealed that the highest occupied molecular orbital energy of I2 (−7.40 eV) is in proximity to P4 (−7.25 eV), and the lowest unoccupied molecular orbital energy of I2 molecule (−4.20 eV) is lower than that of other common non‐metallic molecules (N2, S8, Se8, F2, Cl2, Br2). The introduction of I2 can thus promote the breaking of the P─P bond and accelerate the polymerization of white P molecules. Besides, the ab initio molecular dynamics simulations show that I2 can enhance the kinetics of P‐K alloying. The as‐obtained red P/C composites with I2 deliver excellent cycling stability (358 mAh g−1 after 1200 cycles at 1 A g−1). This study establishes catalysis as a promising pathway to tackle the challenges of P anode for alkali metal ion batteries.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Synchrotron Radiation Laboratory

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3