Large Nonhysteretic Volume Magnetostriction in a Strong and Ductile High‐Entropy Alloy

Author:

Gou Junming1ORCID,Pan Yun1,Yang Tianzi1,Liu Yao1,Liu Guoxin1,Chen Ying1,Zhang Changsheng2,Li Hao2,Lv Bojiang2,Liu Chang3,Xia Weixing4,Ma Tianyu1ORCID

Affiliation:

1. Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an Shaanxi 710049 China

2. Key Laboratory of Neutron Physics Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang Sichuan 621999 China

3. School of Materials Science and Engineering Sichuan University Chengdu Sichuan 610065 China

4. CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets Ningbo Institute of Material Technology and Engineering Chinese Academy of Science Ningbo Zhejiang 315201 China

Abstract

AbstractRapid development of smart technologies poses a big challenge for magnetostrictive materials, which should not only permit isotropic and hysteresis‐free actuation (i.e., nonhysteretic volume change) in magnetic fields, but also have high strength and high ductility. Unfortunately, the magnetostriction from self‐assembly of ferromagnetic domains is volume‐conserving; the volume magnetostriction from field‐induced first‐order phase transition has large intrinsic hysteresis; and most prototype magnetostrictive materials are intrinsically brittle. Here, a magnetic high‐entropy alloy (HEA) Fe35Co35Al10Cr10Ni10 is reported that can rectify these challenges, exhibiting an unprecedented combination of large nonhysteretic volume magnetostriction, high tensile strength and large elongation strain, over a wide working temperature range from room temperature down to 100 K. Its exceptional properties stem from a dual‐phase microstructure, where the face‐centered cubic (FCC) matrix phase with nanoscale compositional and structural fluctuations can enable a magnetic‐field‐induced transition from low‐spin small‐volume state to high‐spin large‐volume state, and the ordered body‐centered cubic (BCC) B2 phase contributes to mechanical strengthening. The present findings may provide insights into designing unconventional and technologically important magnetostrictive materials.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3