Affiliation:
1. Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology Frontiers Science Center for Disease‐related Molecular Network West China Hospital Sichuan University Chengdu 610041 China
2. Institutes for Systems Genetics West China Hospital Sichuan University Chengdu 610041 China
Abstract
AbstractExtracellular vesicle (EV)‐based therapies have emerged as a promising means in regenerative medicine. However, the conventional EV therapy strategy displays some limitations, such as inefficient EV production and lack of tissue‐specific repair effects. Here, it is reported that neonatal‐tissue‐derived EV therapy (NEXT) is a potent strategy for precision tissue repair. In brief, large amounts of EVs with higher yield/purity can be readily isolated from desired tissues with less production time/cost compared to the conventional cell‐culture‐based method. Moreover, source factors, such as age and tissue type, can affect the repair efficacy of such tissue‐derived EVs in different tissue injury models (skin wounds and acute kidney injury), and neonatal‐tissue‐derived EVs show superior tissue repair potency compared with adult‐tissue‐derived EVs. Different age‐ or tissue‐type‐derived EVs have distinct composition (e.g., protein) signatures that are likely due to the diverse metabolic patterns of the donor tissues, which may contribute to the specific repair action modes of NEXT in different types of tissue injury. Furthermore, neonatal‐tissue‐derived EVs can be incorporated with bioactive materials for advanced tissue repair. This study highlights that the NEXT strategy may provide a new avenue for precision tissue repair in many types of tissue injury.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献