Affiliation:
1. The Institute of Technological Sciences Wuhan University Wuhan 430072 P. R. China
2. Institute of Laser Manufacturing Henan Academy of Sciences Zhengzhou 450046 P. R. China
3. School of Industrial Engineering Purdue University West Lafayette IN 47906 USA
Abstract
AbstractConventional propellant materials, such as polymers and single metal elements, have long been investigated for their potential in pulsed laser micropropulsion (LMP) technology. However, achieving superior LMP efficiency through physical mixing of these materials remains a significant challenge. This study presents a paradigm shift by introducing porous crystalline polymers, known as metal‐organic frameworks (MOFs), as novel propellants in pulsed LMP. MOFs are composed of metal cations and organic ligands that form ordered structures through coordination, eliminating the problem of local hot zones arising from uneven physical mixing encountered in LMP. In direct comparison to conventional polymers and single element targets, MOFs exhibit substantially higher LMP efficiency. By precisely tailoring the metal atom fraction within MOFs, an extraordinary ultrahigh efficiency of 51.15% is achieved in pulsed LMP, surpassing the performance of similar materials previously reported in the literature. This pioneering application of MOFs not only revolutionizes the field of LMP but also opens up new frontiers for MOF utilization in various energy applications.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献