MOFs for Ultrahigh Efficiency Pulsed Laser Micropropulsion

Author:

Rao Senlin1,Xu Yuhang1,Yuan Jun2,Liu Feng1,Wang Shuai1,Jiang Haoqing2,Cheng Gary J.13ORCID

Affiliation:

1. The Institute of Technological Sciences Wuhan University Wuhan 430072 P. R. China

2. Institute of Laser Manufacturing Henan Academy of Sciences Zhengzhou 450046 P. R. China

3. School of Industrial Engineering Purdue University West Lafayette IN 47906 USA

Abstract

AbstractConventional propellant materials, such as polymers and single metal elements, have long been investigated for their potential in pulsed laser micropropulsion (LMP) technology. However, achieving superior LMP efficiency through physical mixing of these materials remains a significant challenge. This study presents a paradigm shift by introducing porous crystalline polymers, known as metal‐organic frameworks (MOFs), as novel propellants in pulsed LMP. MOFs are composed of metal cations and organic ligands that form ordered structures through coordination, eliminating the problem of local hot zones arising from uneven physical mixing encountered in LMP. In direct comparison to conventional polymers and single element targets, MOFs exhibit substantially higher LMP efficiency. By precisely tailoring the metal atom fraction within MOFs, an extraordinary ultrahigh efficiency of 51.15% is achieved in pulsed LMP, surpassing the performance of similar materials previously reported in the literature. This pioneering application of MOFs not only revolutionizes the field of LMP but also opens up new frontiers for MOF utilization in various energy applications.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3