Electrocatalytic Nitrate Reduction on Metallic CoNi‐Terminated Catalyst with Industrial‐Level Current Density in Neutral Medium

Author:

Wei Yingying1,Huang Jingjing1,Chen Hong1,Zheng Su‐Jun1,Huang Ren‐Wu1,Dong Xi‐Yan12,Li Lin‐Ke1,Cao Ang3,Cai Jinmeng1,Zang Shuang‐Quan1ORCID

Affiliation:

1. Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China

2. College of Chemistry and Chemical Engineering Henan Polytechnic University Jiaozuo 454003 China

3. State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering Zhejiang University Hangzhou 310027 China

Abstract

AbstractGreen ammonia synthesis through electrocatalytic nitrate reduction reaction (eNO3RR) can serve as an effective alternative to the traditional energy‐intensive Haber‐Bosch process. However, achieving high Faradaic efficiency (FE) at industrially relevant current density in neutral medium poses significant challenges in eNO3RR. Herein, with the guidance of theoretical calculation, a metallic CoNi‐terminated catalyst is successfully designed and constructed on copper foam, which achieves an ammonia FE of up to 100% under industrial‐level current density and very low overpotential (−0.15 V versus reversible hydrogen electrode) in a neutral medium. Multiple characterization results have confirmed that the maintained metal atom‐terminated surface through interaction with copper atoms plays a crucial role in reducing overpotential and achieving high current density. By constructing a homemade gas stripping and absorption device, the complete conversion process for high‐purity ammonium nitrate products is demonstrated, displaying the potential for practical application. This work suggests a sustainable and promising process toward directly converting nitrate‐containing pollutant solutions into practical nitrogen fertilizers.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3