Hexaindium Heptasulfide/Nitrogen and Sulfur Co‐Doped Carbon Hollow Microspindles with Ultrahigh‐Rate Sodium Storage through Stable Conversion and Alloying Reactions

Author:

Zhu Chunyan1,Yu Weiqing1,Zhang Shuxian1,Chen Jianchao1,Liu Qingyuan1,Li Qingyu1,Wang Shijie2,Hua Minghao1,Lin Xiaohang1,Yin Longwei1,Wang Rutao1ORCID

Affiliation:

1. Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials Ministry of Education School of Materials Science and Engineering Shandong University Jinan 250061 China

2. Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China

Abstract

AbstractGroup IIIA–VA metal sulfides (GMSs) have attracted increasing attention because of their unique Na‐storage mechanisms through combined conversion and alloying reactions, thus delivering large theoretical capacities and low working potentials. However, Na+ diffusion within GMSs anodes leads to severe volume change, generally representing a fundamental limitation to rate capability and cycling stability. Here, monodispersed In6S7/nitrogen and sulfur co‐doped carbon hollow microspindles (In6S7/NSC HMS) are produced by morphology‐preserved thermal sulfurization of spindle‐like and porous indium‐based metal organic frameworks. The resulting In6S7/NSC HMS anode exhibits theoretical‐value‐close specific capacity (546.2 mAh g−1 at 0.1 A g−1), ultrahigh rate capability (267.5 mAh g−1 at 30.0 A g−1), high initial coulombic efficiency (≈93.5%), and ≈92.6% capacity retention after 4000 cycles. This kinetically favored In6S7/NSC HMS anode fills up the kinetics gap with a capacitive porous carbon cathode, enabling a sodium‐ion capacitor to deliver an ultrahigh energy density of 136.3 Wh kg−1 and a maximum power density of 47.5 kW kg−1. The in situ/ex situ analytical techniques and theoretical calculation both show that the robust and fast Na+ charge storage of In6S7/NSC HMS arises from the multi‐electron redox mechanism, buffered volume expansion, negligible morphological change, and surface‐controlled solid‐state Na+ transport.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3