Ultra‐Soft Organogel Artificial Muscles Exhibiting High Power Density, Large Stroke, Fast Response and Long‐Term Durability in Air

Author:

Jiang Zhen1,Abbasi Burhan Bin Asghar1,Aloko Sinmisola1,Mokhtari Fatemeh1,Spinks Geoffrey M.1ORCID

Affiliation:

1. School of Mechanical Materials Mechatronic and Biomedical Engineering University of Wollongong Wollongong NSW 2522 Australia

Abstract

AbstractPolymeric gel‐based artificial muscles exhibiting tissue‐matched Young's modulus (10 Pa–1 MPa) promise to be core components in future soft machines with inherently safe human–machine interactions. However, the ability to simultaneously generate fast, large, high‐power, and long‐lasting actuation in the open‐air environment, has yet been demonstrated in this class of ultra‐soft materials. Herein, to overcome this hurdle, the design and synthesis of a twisted and coiled liquid crystalline glycerol‐organogel (TCLCG) is reported. Such material with a low Young's modulus of 133 kPa can surpass the actuation performance of skeletal muscles in a variety of aspects, including actuation strain (66%), actuation rate (275% s−1), power density (438 kW m−3), and work capacity (105 kJ m−3). Notably, its power density is 14 times higher than the record of state‐of‐the‐art polymeric gels. No actuation performance degradation is detected in the TCLCG even after air exposure for 7 days, owing to the excellent water retention ability enabled by glycerol as co‐solvent with water. Using TCLCG, mobile soft robots with extraordinary maneuverability in unstructured environments are successfully demonstrated, including a crawler showing fast bidirectional locomotion (0.50 mm s−1) in a small‐confined space, and a roller that can escape after deep burying in sand.

Funder

Australian Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3