Toward High‐Performance Metal–Organic‐Framework‐Based Quasi‐Solid‐State Electrolytes: Tunable Structures and Electrochemical Properties

Author:

Dong Panpan12,Zhang Xiahui12,Hiscox William3,Liu Juejing12,Zamora Julio12,Li Xiaoyu24,Su Muqiao12,Zhang Qiang24,Guo Xiaofeng124,McCloy John12,Song Min‐Kyu12ORCID

Affiliation:

1. School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA

2. Materials Science and Engineering Program Washington State University Pullman WA 99164 USA

3. Center for NMR spectroscopy Washington State University Pullman WA 99164 USA

4. Department of Chemistry Washington State University Pullman WA 99164 USA

Abstract

AbstractMetal–organic frameworks (MOFs) have been reported as promising materials for electrochemical applications owing to their tunable porous structures and ion‐sieving capability. However, it remains challenging to rationally design MOF‐based electrolytes for high‐energy lithium batteries. In this work, by combining advanced characterization and modeling tools, a series of nanocrystalline MOFs is designed, and the effects of pore apertures and open metal sites on ion‐transport properties and electrochemical stability of MOF quasi‐solid‐state electrolytes are systematically studied. It isdemonstrated that MOFs with non‐redox‐active metal centers can lead to a much wider electrochemical stability window than those with redox‐active centers. Furthermore, the pore aperture of MOFs is found to be a dominating factor that determines the uptake of lithium salt and thus ionic conductivity. The ab initio molecular dynamics simulations further demonstrate that open metal sites of MOFs can facilitate the dissociation of lithium salt and immobilize anions via Lewis acid–base interaction, leading to good lithium‐ion mobility and high transference number. The MOF quasi‐solid‐state electrolyte demonstrates great battery performance with commercial LiFePO4 and LiCoO2 cathodes at 30 °C. This work provides new insights into structure–property relationships between tunable structure and electrochemical properties of MOFs that can lead to the development of advanced quasi‐solid‐state electrolytes for high‐energy lithium batteries.

Funder

China Scholarship Council

American Chemical Society Petroleum Research Fund

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3