Air‐Working Electrochromic Artificial Muscles

Author:

Ling Yong1,Li Linpeng2,Liu Junhao1,Li Kerui1ORCID,Hou Chengyi1,Zhang Qinghong3,Li Yaogang3,Wang Hongzhi1ORCID

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China

2. Shanghai Key Laboratory of Sleep Disordered Breathing Department of Otolaryngology‐Head and Neck Surgery Otolaryngology Institute of Shanghai Jiao Tong University Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 P. R. China

3. Engineering Research Center of Advanced Glass Manufacturing Technology Ministry of Education College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China

Abstract

AbstractArtificial muscles are indispensable components for next‐generation robotics to mimic the sophisticated movements of living systems and provide higher output energies when compared with real muscles. However, artificial muscles actuated by electrochemical ion injection have problems with single actuation properties and difficulties in stable operation in air. Here, air‐working electrochromic artificial muscles (EAMs) with both color‐changing and actuation functions are reported, which are constructed based on vanadium pentoxide nanowires and carbon tube yarn. Each EAM can generate a contractile stroke of ≈12% during stable operation in the air with multiple color changes (yellow‐green‐gray) under ±4 V actuation voltages. The reflectance contrast is as high as 51%, demonstrating the excellent versatility of the EAMs. In addition, a torroidal EAM arrangement with fast response and high resilience is constructed. The EAM's contractile stroke can be displayed through visual color changes, which provides new ideas for future artificial muscle applications in soft robots and artificial limbs.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Plan Of Shanghai Science and Technology Commission

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3