Phase Evolution of Multi‐Metal Dichalcogenides With Conversion‐Alloying Hybrid Mechanism for Superior Lithium Storage

Author:

Jiang Jingjing123,Hu Sanlue4,Zhang Xiangyong13,Li Senlin4,Wei Hua13,Ren Baohui13,Li Shizhen1,Chen Guangming1,Yang Jinlong1,Han Cuiping45ORCID,Liu Zhuoxin1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of New Energy Materials Service Safety College of Materials Science and Engineering Shenzhen University Shenzhen 518055 China

2. College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China

3. Songshan Lake Materials Laboratory Dongguan 523808 China

4. Faculty of Materials Science and Energy Engineering Shenzhen University of Advanced Technology Shenzhen Guangdong 518055 China

5. Institute of Technology for Carbon Neutrality Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong 518055 China

Abstract

AbstractTraditional lithium‐ion battery (LIB) anodes, whether intercalation‐type like graphite or alloying‐type like silicon, employing a single lithium storage mechanism, are often limited by modest capacity or substantial volume changes. Here, the kesterite multi‐metal dichalcogenide (CZTSSe) is introduced as an anode material that harnesses a conversion‐alloying hybrid lithium storage mechanism. Results unveil that during the charge–discharge processes, the CZTSSe undergoes a comprehensive phase evolution, transitioning from kesterite structure to multiple dominant phases of sulfides, selenides, metals, and alloys. The involvement of multi‐components facilitates electron transport and mitigates swelling stress; meanwhile, it results in formation of abundant defects and heterojunctions, allowing for increased lithium storage active sites and reduced lithium diffusion barrier. The CZTSSe delivers a high specific capacity of up to 2266 mA h g−1 at 0.1 A g−1; while, maintaining a stable output of 116 mA h g−1 after 10 000 cycles at 20 A g−1. It also demonstrates remarkable low‐temperature performance, retaining 987 mA h g−1 even after 600 cycles at −40 °C. When employed in full cells, a high specific energy of 562 Wh kg−1 is achieved, rivalling many state‐of‐the‐art LIBs. This research offers valuable insights into the design of LIB electrodes leveraging multiple lithium storage mechanisms.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Program

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3