Fluorinating All Interfaces Enables Super‐Stable Solid‐State Lithium Batteries by In Situ Conversion of Detrimental Surface Li2CO3

Author:

Guo Yong123,Pan Siyuan123,Yi Xuerui123,Chi Sijia123,Yin Xunjie123,Geng Chuannan123,Yin Qianhui123,Zhan QinYi123,Zhao Ziyun123,Jin Feng‐Min1,Fang Hui1,He Yan‐Bing4ORCID,Kang Feiyu4,Wu Shichao123,Yang Quan‐Hong1235ORCID

Affiliation:

1. Nanoyang Group Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage School of Chemical Engineering and Technology and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China

2. National Industry‐Education Integration Platform of Energy Storage Tianjin University Tianjin 300072 China

3. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China

4. Shenzhen Geim Graphene Center Institute of Materials Research (IMR) Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China

5. Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Fuzhou 350207 China

Abstract

AbstractLi‐stuffed battery materials intrinsically have surface impurities, typically Li2CO3, which introduce severe kinetic barriers and electrochemical decay for a cycling battery. For energy‐dense solid‐state lithium batteries (SSLBs), mitigating detrimental Li2CO3 from both cathode and electrolyte materials is required, while the direct removal approaches hardly avoid Li2CO3 regeneration. Here, a decarbonization–fluorination strategy to construct ultrastable LiF‐rich interphases throughout the SSLBs by in situ reacting Li2CO3 with LiPF6 at 60 °C is reported. The fluorination of all interfaces effectively suppresses parasitic reactions while substantially reducing the interface resistance, producing a dendrite‐free Li anode with an impressive cycling stability of up to 7000 h. Particularly, transition metal dissolution associated with gas evolution in the cathodes is remarkably reduced, leading to notable improvements in battery rate capability and cyclability at a high voltage of 4.5 V. This all‐in‐one approach propels the development of SSLBs by overcoming the limitations associated with surface impurities and interfacial challenges.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3