Affiliation:
1. School of Energy and Environmental Engineering University of Science and Technology Beijing Beijing 100083 China
2. Research Center of Solar Power and Refrigeration School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China
3. Department of Energy and Power Engineering Tsinghua University Beijing 100084 China
Abstract
AbstractWater is the source of life and civilization, but water icing causes catastrophic damage to human life and diverse industrial processes. Currently, superhydrophobic surfaces (inspired by the lotus effect) aided anti‐icing attracts intensive attention due to their energy‐free property. Here, recent advances in anti‐icing by design and functionalization of superhydrophobic surfaces are reviewed. The mechanisms and advantages of conventional, macrostructured, and photothermal superhydrophobic surfaces are introduced in turn. Conventional superhydrophobic surfaces, as well as macrostructured ones, easily lose the icephobic property under extreme conditions, while photothermal superhydrophobic surfaces strongly rely on solar illumination. To address the above issues, a potentially smart strategy is found by developing macrostructured photothermal storage superhydrophobic (MPSS) surfaces, which integrate the functions of macrostructured superhydrophobic materials, photothermal materials, and phase change materials (PCMs), and are expected to achieve all‐day anti‐icing in various fields. Finally, the latest achievements in developing MPSS surfaces, showcasing their immense potential, are highlighted. Besides, the perspectives on the future development of MPSS surfaces are provided and the problems that need to be solved in their practical applications are proposed.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献