Topology Hierarchy of Transition Metal Dichalcogenides Built from Quantum Spin Hall Layers

Author:

Xu Lixuan1,Li Yiwei2ORCID,Fang Yuqiang3,Zheng Huijun45,Shi Wujun467,Chen Cheng8,Pei Ding45,Lu Donghui9,Hashimoto Makoto9,Wang Meixiao45,Yang Lexian1,Feng Xiao1,Zhang Haijun10,Huang Fuqiang3,Xue Qikun1,He Ke1,Liu Zhongkai45,Chen Yulin4511

Affiliation:

1. State Key Laboratory of Low Dimensional Quantum Physics Department of Physics Tsinghua University Beijing 100084 P. R. China

2. Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China

3. State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China

4. School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China

5. ShanghaiTech Laboratory for Topological Physics Shanghai 201210 P. R. China

6. Center for Transformative Science ShanghaiTech University Shanghai 201210 P. R. China

7. Shanghai high repetition rate XFEL and extreme light facility (SHINE) ShanghaiTech University Shanghai 201210 P. R. China

8. Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

9. Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA

10. National Laboratory of Solid State Microstructures and School of Physics Nanjing University Nanjing 210093 P. R. China

11. Clarendon LaboratoryDepartment of Physics University of Oxford Oxford OX1 3PU UK

Abstract

AbstractThe evolution of the physical properties of 2D material from monolayer limit to the bulk reveals unique consequences from dimension confinement and provides a distinct tuning knob for applications. Monolayer 1T'‐phase transition metal dichalcogenides (1T'‐TMDs) with ubiquitous quantum spin Hall (QSH) states are ideal 2D building blocks of various 3D topological phases. However, the stacking geometry has been previously limited to the bulk 1T'‐WTe2 type. Here, the novel 2M‐TMDs consisting of translationally stacked 1T'‐monolayers are introduced as promising material platforms with tunable inverted bandgaps and interlayer coupling. By performing advanced polarization‐dependent angle‐resolved photoemission spectroscopy as well as first‐principles calculations on the electronic structure of 2M‐TMDs, a topology hierarchy is revealed: 2M‐WSe2, MoS2, and MoSe2 are weak topological insulators (WTIs), whereas 2M‐WS2 is a strong topological insulator (STI). Further demonstration of topological phase transitions by tunning interlayer distance indicates that band inversion amplitude and interlayer coupling jointly determine different topological states in 2M‐TMDs. It is proposed that 2M‐TMDs are parent compounds of various exotic phases including topological superconductors and promise great application potentials in quantum electronics due to their flexibility in patterning with 2D materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3