Affiliation:
1. School of Electrical Engineering and Automation Wuhan University Wuhan Hubei 430072 China
2. School of Power and Mechanical Engineering Wuhan University Wuhan Hubei 430072 China
3. The Institute of Technological Sciences Wuhan University Wuhan Hubei 430072 China
4. Department of Engineering Cambridge University Cambridge CB2 1PZ UK
Abstract
AbstractMachine learning (ML) has emerged as a powerful tool in the research field of high entropy compounds (HECs), which have gained worldwide attention due to their vast compositional space and abundant regulatability. However, the complex structure space of HEC poses challenges to traditional experimental and computational approaches, necessitating the adoption of machine learning. Microscopically, machine learning can model the Hamiltonian of the HEC system, enabling atomic‐level property investigations, while macroscopically, it can analyze macroscopic material characteristics such as hardness, melting point, and ductility. Various machine learning algorithms, both traditional methods and deep neural networks, can be employed in HEC research. Comprehensive and accurate data collection, feature engineering, and model training and selection through cross‐validation are crucial for establishing excellent ML models. ML also holds promise in analyzing phase structures and stability, constructing potentials in simulations, and facilitating the design of functional materials. Although some domains, such as magnetic and device materials, still require further exploration, machine learning's potential in HEC research is substantial. Consequently, machine learning has become an indispensable tool in understanding and exploiting the capabilities of HEC, serving as the foundation for the new paradigm of Artificial‐intelligence‐assisted material exploration.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献