A Large‐Scale Fabrication of Flexible, Ultrathin, and Robust Solid Electrolyte for Solid‐State Lithium‐Sulfur Batteries

Author:

Nie Lu1,Zhu Jinling2,Wu Xiaoyan2,Zhang Mengtian1,Xiao Xiao1,Gao Runhua1,Wu Xinru1,Zhu Yanfei1,Chen Shaojie3,Han Zhiyuan1,Yu Yi2,Wang Shaogang4,Ling Shengjie2,Zhou Guangmin1ORCID

Affiliation:

1. Tsinghua‐Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 P. R. China

2. School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China

3. Department of Chemistry Fudan University Shanghai 200438 China

4. Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China

Abstract

AbstractAll‐solid‐state lithium metal batteries (ASSLMBs) are considered as the most promising candidates for the next‐generation high‐safety batteries. To achieve high energy density in ASSLMBs, it is essential that the solid‐state electrolytes (SSEs) are lightweight, thin, and possess superior electrochemical stability. In this study, a feasible and scalable fabrication approach to construct 3D supporting skeleton using an electro‐blown spinning technique is proposed. This skeleton not only enhances the mechanical strength but also hinders the migration of Li‐salt anions, improving the lithium‐ion transference number of the SSE. This provides a homogeneous distribution of Li‐ion flux and local current density, promoting uniform Li deposition. As a result, based on the mechanically robust and thin SSEs, the Li symmetric cells show outstanding Li plating/stripping reversibility. Besides, a stable interface contact between SSE and Li anode has been established with the formation of an F‐enriched solid electrolyte interface layer. The solid‐state Li|sulfurized polyacrylonitrile (Li|SPAN) cell achieves a capacity retention ratio of 94.0% after 350 cycles at 0.5 C. Also, the high‐voltage Li|LCO cell shows a capacity retention of 92.4% at 0.5 C after 500 cycles. This fabrication approach for SSEs is applicable for commercially large‐scale production and application in high‐energy‐density and high‐safety ASSLMBs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Program

Guangdong Innovative and Entrepreneurial Research Team Program

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3