The Unique Fe3Mo3N Structure Bestowed Efficient Fenton‐Like Performance of the Iron‐Based Catalysts: The Double Enhancement of Radicals and Nonradicals

Author:

Liu Zhen1,Su Ruidian1,Xu Fei2,Xu Xing1,Gao Baoyu1,Li Qian1ORCID

Affiliation:

1. Shandong Key Laboratory of Water Pollution Control and Resource Reuse Shandong Key Laboratory of Environmental Processes and Health School of Environmental Science and Engineering Shandong University Qingdao 266200 P. R. China

2. Environmental Research Institute Shandong University Qingdao 266200 P. R. China

Abstract

AbstractIron‐based catalysts are widely used in Fenton‐like water pollution control technology due to their high efficiency, but their practical applications are limited by complex preparation conditions and strong blockage of Fe2+/Fe3+ cycle during the reaction. Here, a new iron–molybdenum bimetallic carbon‐based catalyst is designed and synthesized using cellulose hydrogel for adsorption of Fe and Mo bimetals as a template, and the effective iron cycle in water treatment is realized. The integrated materials (Fe2.5Mo@CNs) with “catalytic/cocatalytic” performance have higher Fenton‐like activation properties and universality than the equivalent quantity iron–carbon‐based composite catalysts (Fe@CNs). Through the different characterization methods, experimental verifications and theoretical calculations show that the unique Fe3Mo3N structure promotes the adsorption of persulfate and reduces the energy barrier of the reaction, further completing the double enhancement of radicals (such as SO4·) and nonradicals (1O2 and electron transport process). The integrated “catalytic/cocatalytic” combined material is expected to provide a new promotion strategy for Fenton‐like water pollution control.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3