Stabilizing the Deep Sodiation Process in Layered Sodium Manganese Cathodes by Anchoring Boron Ions

Author:

Yang Tingting1,Li Qiang2,Liu Zhengbo1,Li Tianyi3,Wiaderek Kamila M.3,Liu Yingxia4,Yin Zijia1,Lan Si56,Wang Wei1,Tang Yu1,Ren Yang16,Liu Qi16ORCID

Affiliation:

1. Department of Physics City University of Hong Kong Hong Kong 999077 P. R. China

2. Beijing Advanced Innovation Center for Materials Genome Engineering Institute of Solid State Chemistry University of Science and Technology Beijing Beijing 100083 P. R. China

3. X‐Ray Science Division Argonne National Laboratory Argonne IL 60439 USA

4. Department of Systems Engineering City University of Hong Kong Hong Kong 999077 P. R. China

5. School of Material Science and Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China

6. Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P. R. China

Abstract

AbstractAdvanced high‐energy‐density sodium‐ion batteries (SIBs) are inseparable from cathode materials with high specific capacities. Layered manganese‐rich oxides (NaxMnO2, 0.6 ≤ x ≤1) are promising cathode materials owing to their ease of intercalation and extraction of a considerable amount of sodium ions. However, lattice interactions, especially electrostatic repulsive forces and anisotropic stresses, are usually caused by deep desodiatin/sodiation process, resulting in intragranular cracks and capacity degradation in SIBs. Here, boron ions are introduced into the layered structure to build up B─O─Mn bonds. The regulated electronic structure in Na0.637B0.038MnO2 (B‐NMO) materials inhibits the deformation of MnO6 octahedra, which finally achieves a gentle structural transition during the deep sodiation process. B‐NMO electrode exhibits a high capacity (141 mAh g–1) at 1 C with a capacity retention of 81% after 100 cycles. Therefore, anchoring boron to manganese‐rich materials inhibits the detrimental structural evolution of deep sodiation and can be used to obtain excellent cathode materials for SIBs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

U.S. Department of Energy

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3