In Situ Surface Reconstruction toward Planar Heterojunction for Efficient and Stable FAPbI3 Quantum Dot Solar Cells

Author:

Li Maoxin1,Bao Yaqi1,Hui Wei1,Sun Kun2,Gu Lei1,Kang Xinxin1,Wang Dourong1,Wang Baohua1,Deng Haoran1,Guo Renjun2,Li Zerui2,Jiang Xiongzhuo2,Müller‐Buschbaum Peter23,Song Lin1ORCID,Huang Wei1

Affiliation:

1. Frontiers Science Center for Flexible Electronics (FSCFE) Institute of Flexible Electronics (IFE) Ningbo Institute of Northwestern Polytechnical University Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 P. R. China

2. Department of Physics Chair for Functional Materials TUM School of Natural Sciences Technical University of Munich James‐Franck‐Str. 1 85748 Garching Germany

3. Heinz Maier‐Leibnitz Zentrum (MLZ) Technical University of Munich Lichtenbergstr. 1 85748 Garching Germany

Abstract

AbstractPure‐phase α‐FAPbI3 quantum dots (QDs) are the focus of an increasing interest in photovoltaics due to their superior ambient stability, large absorption coefficient, and long charge‐carrier lifetime. However, the trap states induced by the ligand‐exchange process limit the photovoltaic performances. Here, a simple post treatment using methylamine thiocyanate is developed to reconstruct the FAPbI3‐QD film surface, in which a MAPbI3 capping layer with a thickness of 6.2 nm is formed on the film top. This planar perovskite heterojunction leads to a reduced density of trap‐states, a decreased band gap, and a facilitated charge carrier transport. As a result, a record high power conversion efficiency (PCE) of 16.23% with negligible hysteresis is achieved for the FAPbI3 QD solar cell, and it retains over 90% of the initial PCE after being stored in ambient environment for 1000 h.

Funder

National Natural Science Foundation of China

China Scholarship Council

Deutsche Forschungsgemeinschaft

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3