Bifunctional Ultrathin RhRu0.5‐Alloy Nanowire Electrocatalysts for Hydrazine‐Assisted Water Splitting

Author:

Fu Xiaoyang12,Cheng Dongfang3,Wan Chengzhang12,Kumari Simran3,Zhang Hongtu1,Zhang Ao2,Huyan Huaixun4,Zhou Jingxuan2,Ren Huaying1,Wang Sibo1,Zhao Zipeng2,Zhao Xun5,Chen Jun5,Pan Xiaoqing4,Sautet Philippe13,Huang Yu2ORCID,Duan Xiangfeng1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA

2. Department of Materials Science and Engineering University of California, Los Angeles Los Angeles CA 90095 USA

3. Department of Chemical and Biomolecular Engineering University of California, Los Angeles Los Angeles CA 90095 USA

4. Department of Materials Science and Engineering University of California, Irvine Irvine CA 92697 USA

5. Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095 USA

Abstract

AbstractHydrazine‐assisted water electrolysis offers a feasible path for low‐voltage green hydrogen production. Herein, the design and synthesis of ultrathin RhRu0.5‐alloy wavy nanowires as bifunctional electrocatalysts for both the anodic hydrazine oxidation reaction (HzOR) and the cathodic hydrogen evolution reaction (HER) is reported. It is shown that the RhRu0.5‐alloy wavy nanowires can achieve complete electrooxidation of hydrazine with a low overpotential and high mass activity, as well as improved performance for the HER. The resulting RhRu0.5 bifunctional electrocatalysts enable, high performance hydrazine‐assisted water electrolysis delivering a current density of 100 mA cm−2 at an ultralow cell voltage of 54 mV and a high current density of 853 mA cm−2 at a cell voltage of 0.6 V. The RhRu0.5 electrocatalysts further demonstrate a stable operation at a high current density of 100 mA cm−2 for 80 hours of testing period with little irreversible degradation. The overall performance greatly exceeds that of the previously reported hydrazine‐assisted water electrolyzers, offering a pathway for efficiently converting hazardous hydrazine into molecular hydrogen.

Funder

National Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3