Diagnosing and Correcting the Failure of the Solid‐State Polymer Electrolyte for Enhancing Solid‐State Lithium–Sulfur Batteries

Author:

Meng Xiangyu1,Liu Yuzhao1,Ma Yanfu2,Boyjoo Yash2,Liu Jian2,Qiu Jieshan3,Wang Zhiyu14ORCID

Affiliation:

1. State Key Lab of Fine Chemicals Liaoning Key Lab for Energy Materials and Chemical Engineering School of Chemical Engineering Dalian University of Technology Dalian 116024 China

2. State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China

3. College of Chemical Engineering Beijing University of Chemical Technology Beijing 100029 China

4. Branch of New Material Development Valiant Co. Ltd.  Yantai 265503 China

Abstract

AbstractSolid‐state polymer electrolytes (SPEs) attract great interest in developing high‐performance yet reliable solid‐state batteries. However, understanding of the failure mechanism of the SPE and SPE‐based solid‐state batteries remains in its infancy, posing a great barrier to practical solid‐state batteries. Herein, the high accumulation and clogging of “dead” lithium polysulfides (LiPS) on the interface between the cathode and SPE with intrinsic diffusion limitation is identified as a critical failure cause of SPE‐based solid‐state Li–S batteries. It induces a poorly reversible chemical environment with retarded kinetics on the cathode–SPE interface and in bulk SPEs, starving the Li–S redox in solid‐state cells. This observation is different from the case in liquid electrolytes with free solvent and charge carriers, where LiPS dissolve but remain alive for electrochemical/chemical redox without interfacial clogging. Electrocatalysis demonstrates the feasibility of tailoring the chemical environment in diffusion‐restricted reaction media for reducing Li–S redox failure in the SPE. It enables Ah‐level solid‐state Li–S pouch cells with a high specific energy of 343 Wh kg−1 on the cell level. This work may shed new light on the understanding of the failure mechanism of SPE for bottom‐up improvement of solid‐state Li–S batteries.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3