Biomimetic Gradient Bouligand Structure Enhances Impact Resistance of Ceramic‐Polymer Composites

Author:

Wen Shao‐Meng1,Chen Si‐Ming1,Gao Weitao2,Zheng Zhijun2ORCID,Bao Jia‐Zheng1,Cui Chen1,Liu Shuai2,Gao Huai‐Ling1ORCID,Yu Shu‐Hong1ORCID

Affiliation:

1. Department of Chemistry Institute of Biomimetic Materials & Chemistry Anhui Engineering Laboratory of Biomimetic Materials Division of Nanomaterials & Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China

2. CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Modern Mechanics University of Science and Technology of China Hefei 230027 China

Abstract

AbstractBiological materials relied on multiple synergistic structural design elements typically exhibit excellent comprehensive mechanical properties. Hierarchical incorporation of different biostructural elements into a single artificial material is a promising approach to enhance mechanical properties, but remains challenging. Herein, a biomimetic structural design strategy is proposed by coupling gradient structure with twisted plywood Bouligand structure, attempting to improve the impact resistance of ceramic‐polymer composites. Via robocasting and sintering, kaolin ceramic filaments reinforced by coaxially aligned alumina nanoplatelets are arranged into Bouligand structure with a gradual transition in filament spacing along the thickness direction. After the following polymer infiltration, biomimetic ceramic‐polymer composites with a gradient Bouligand (GB) structure are eventually fabricated. Experimental investigations reveal that the incorporation of gradient structure into Bouligand structure improves both the peak force and total energy absorption of the obtained ceramic‐polymer composites. Computational modeling further suggests the substantial improvement in impact resistance by adopting GB structure, and clarifies the underlying deformation behavior of the biomimetic GB structured composites under impact. This biomimetic design strategy may provide valuable insights for developing lightweight and impact‐resistant structural materials in the future.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

University of Science and Technology of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3