Tailoring Oxygen Reduction Reaction Kinetics on Perovskite Oxides via Oxygen Vacancies for Low‐Temperature and Knittable Zinc–Air Batteries

Author:

Huang Hongjiao1,Huang Aoming1,Liu Di2,Han Wentao1,Kuo Chun‐Han3,Chen Han‐Yi3,Li Linlin1,Pan Hui2,Peng Shengjie1ORCID

Affiliation:

1. College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China

2. Institute of Applied Physics and Materials Engineering University of Macau Macau 999078 China

3. Department of Materials Science and Engineering National Tsing Hua University Hsinchu 30013 Taiwan

Abstract

AbstractHigh kinetics oxygen reduction reaction (ORR) electrocatalysts under low temperature are critical and highly desired for temperature‐tolerant energy conversion and storage devices, but remain insufficiently investigated. Herein, oxygen vacancy‐rich porous perovskite oxide (CaMnO3) nanofibers coated with reduced graphene oxide coating (V‐CMO/rGO) are developed as the air electrode catalyst for low‐temperature and knittable Zn–air batteries. V‐CMO/rGO exhibits top‐level ORR activity among perovskite oxides and shows impressive kinetics under low temperature. Experimental and theoretical calculation results reveal that the synergistic effect between metal atoms and oxygen vacancies, as well as the accelerated kinetics and enhanced electric conductivity and mass transfer over the rGO coated nanofiber 3D network contribute to the enhanced catalytic activity. The desorption of ORR intermediate is promoted by the regulated electron filling. The V‐CMO/rGO drives knittable and flexible Zn–air batteries under a low temperature of −40 °C with high peak power density of 56 mW cm−2 and long cycle life of over 80 h. This study provides insight of kinetically active catalyst and facilitates the ZABs application in harsh environment.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3