Anti‐Fatigue Tandem Organic Photovoltaics for Indoor Illumination

Author:

Li Hao12,Zheng Zhong12,Yang Shiwei23,Wang Tao2,Yang Yi24,Tang Yanjie12,Zhang Shaoqing12,Hou Jianhui124ORCID

Affiliation:

1. School of Chemistry and Biology Engineering University of Science and Technology Beijing Beijing 100083 China

2. State Key Laboratory of Polymer Physics and Chemistry Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

3. School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China

4. University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractThe ability of achieving high efficiency makes tandem organic photovoltaics (PVs) a competitive technique in potential indoor applications. Except high efficiency, reliable indoor energy supply also calls for outstanding stability. However, unavoidable unstable voltage supply from the circuit control system for indoor light sources like light emitting diodes (LED) and incandescent lamps would cause carrier density fluctuation and device fatigue driven by periodic light/dark switching. In this work, the strobing‐induced fatigue within the bulk heterojunction (BHJ)/interconnecting layer (ICL) interface is first revealed and overcome. Based on reliable and effective interfacial doping between conjugated acceptor and metal oxide, the interfacial capacitance that determines the strobing‐induced fatigue, has been significantly restrained. The imbalance carrier migration and fierce inter‐layer accommodating during the burn‐in stage caused by light strobing are substantially diminished. Benefit from this method, the stability of tandem devices is highly enhanced under strobing indoor illumination, and a champion efficiency (35.02%) is obtained. The method provides guidance for further material design for interconnecting layers in organic photovoltaics.

Funder

National Natural Science Foundation of China

Beijing National Laboratory for Molecular Sciences

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3