Affiliation:
1. School of Materials Science and Engineering Ocean University of China Qingdao 266404 China
2. Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin Austin Texas 78712 USA
Abstract
AbstractAll‐solid‐state lithium batteries (ASSLBs) face critical challenges of low cathode loading and poor rate performances, which handicaps their energy/power densities. The widely‐accepted aim of high ionic conductivity and low interfacial resistance seems insufficient to overcome these challenges. Here, it is revealed that an efficient ion percolating network in the cathode exerts a more critical influence on the electrochemical performance of ASSLBs. By constructing vertical alignment of Li0.35La0.55TiO3 nanowires (LLTO NWs) in solid‐state cathode through magnetic manipulation, the ionic conductivity of the cathode increases twice compared with the cathode consisted of randomly distributed LLTO NWs. The all‐solid‐state LiFePO4/Li cells using poly(ethylene oxide) as the electrolyte is able to deliver high capacities of 151 mAh g−1 (2 C) and 100 mAh g−1 (5 C) at 60 °C, and a room‐temperature capacity of 108 mAh g−1 can be achieved at a charging rate of 2 C. Furthermore, the cell can reach a high areal capacity of 3 mAh cm−2 even with a practical LFP loading of 20 mg cm−2. The universality of this strategy is also presented showing the demonstration in LiNi0.8Co0.1Mn0.1O2 cathodes. This work offers new pathways for designing ASSLBs with improved energy/power densities.
Funder
Fundamental Research Funds for the Central Universities
Welch Foundation
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献