Light‐Induced Giant Rashba Spin–Orbit Coupling at Superconducting KTaO3(110) Heterointerfaces

Author:

Gan Yulin1ORCID,Yang Fazhi1,Kong Lingyuan1,Chen Xuejiao2,Xu Hao1,Zhao Jin1,Li Gang1,Zhao Yuchen1,Yan Lei1,Zhong Zhicheng2,Chen Yunzhong1ORCID,Ding Hong134

Affiliation:

1. Beijing National Laboratory of Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China

2. Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Ningbo Institute of Materials Technology and Engineering (NIMTE) Chinese Academy of Sciences Ningbo 315201 China

3. Tsung‐Dao Lee Institute & School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China

4. CAS Center for Excellence in Topological Quantum Computation University of Chinese Academy of Sciences Beijing 100190 China

Abstract

AbstractThe 2D electron system (2DES) at the KTaO3 surface or heterointerface with 5d orbitals hosts extraordinary physical properties, including a stronger Rashba spin–orbit coupling (RSOC), higher superconducting transition temperature, and potential of topological superconductivity. Herein, a huge enhancement of RSOC under light illumination achieved at a superconducting amorphous‐Hf0.5Zr0.5O2/KTaO3(110) heterointerfaces is reported. The superconducting transition is observed with Tc = 0.62 K and the temperature‐dependent upper critical field reveals the interaction between spin–orbit scattering and superconductivity. A strong RSOC with Bso = 1.9 T is revealed by weak antilocalization in the normal state, which undergoes sevenfold enhancement under light illumination. Furthermore, RSOC strength develops a dome‐shaped dependence of carrier density with the maximum of Bso = 12.6 T achieved near the Lifshitz transition point nc ≈ 4.1 × 1013 cm−2. The highly tunable giant RSOC at KTaO3(110)‐based superconducting interfaces show great potential for spintronics.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3