Multiphase Symbiotic Engineered Elastic Ceramic‐Carbon Aerogels with Advanced Thermal Protection in Extreme Oxidative Environments

Author:

Chang Xinyi1,Yang Yunfei1,Cheng Xiaota1,Yin Xia1,Yu Jianyong2,Liu Yi‐Tao2,Ding Bin2ORCID

Affiliation:

1. Key Laboratory of Textile Science & Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China

2. Innovation Center for Textile Science and Technology Donghua University Shanghai 201620 China

Abstract

AbstractElastic aerogels can dissipate aerodynamic forces and thermal stresses by reversible slipping or deforming to avoid sudden failure caused by stress concentration, making them the most promising candidates for thermal protection in aerospace applications. However, existing elastic aerogels face difficulties achieving reliable protection above 1500 °C in aerobic environments due to their poor thermomechanical stability and significantly increased thermal conductivity at elevated temperatures. Here, a multiphase sequence and multiscale structural engineering strategy is proposed to synthesize mullite‐carbon hybrid nanofibrous aerogels. The heterogeneous symbiotic effect between components simultaneously inhibits ceramic crystalline coarsening and carbon thermal etching, thus ensuring the thermal stability of the nanofiber building blocks. Efficient load transfer and high interfacial thermal resistance at crystalline‐amorphous phase boundaries on the microscopic scale, coupled with mesoscale lamellar cellular and locally closed‐pore structures, achieve rapid stress dissipation and thermal energy attenuation in aerogels. This robust thermal protection material system is compatible with ultralight density (30 mg cm–3), reversible compression strain of 60%, extraordinary thermomechanical stability (up to 1600 °C in oxidative environments), and ultralow thermal conductivity (50.58 mW m–1 K–1 at 300 °C), offering new options and possibilities to cope with the harsh operating environments faced by space exploration.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Program of Shanghai Academic Research Leader

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3