Nonlinear dynamic response analysis of a hybrid concrete‐filled steel tubular truss lightweight bridge under strong earthquakes

Author:

Huang Yufan1,Chen Lingjie1,Wu Qingxiong12,Yuan Huihui13ORCID,Chen Baochun1,Nakamura Shozo4

Affiliation:

1. College of Civil Engineering Fuzhou University Fuzhou China

2. Fujian Provincial Key Laboratory on Multi‐Disasters Prevention and Mitigation in Civil Engineering Fuzhou China

3. Key Laboratory of Civil Engineering Fujian Province University Fuzhou China

4. School of Engineering Nagasaki University Bunkyo‐machi Japan

Abstract

AbstractConcrete‐filled steel tubular (CFST) trusses have seen recent development and application in bridges found in mountainous regions with deep valleys, and especially in seismic zones. In this study, a hybrid CFST truss lightweight bridge was selected as the research object. This bridge is composited of CFST composite truss girders (superstructure) and CFST lattice piers (substructure). Two different finite element models (FEM) for nonlinear seismic response analysis, one is detailed model and the other is simplified model, were established. By comparing with the detailed model, the results of the shaking table test as well as the real bridge test, the simplified model was found to be accurate. Considering the CFST columns' edge strain, the most unfavorable input direction of horizontal ground motion was perpendicular to the connection line of the bearings at both ends of the main girder. Also, the simultaneous influence of vertical ground motion and horizontal ground motion needs to be taken into consideration. By increasing the intensity of input ground motion, the yielding order of CFST lattice piers and its effect on the seismic response were also discussed. Results indicated that the bridge was in the elastic stage for the designed seismic ground motion. After the CFST lattice piers reached the plastic stage, the displacement and in‐plane bending moment had larger amplification coefficients compared to the increase coefficient of the input ground motion, while had a much smaller axial force amplification coefficient. Moreover, the in‐plane bending moment had a larger amplification coefficient in high piers compared to short piers.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3