Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network
Author:
Affiliation:
1. Department of Civil and Environmental Engineering Pennsylvania State University University Park PA USA
2. Department of Computer Science and Engineering Pennsylvania State University University Park PA USA
Funder
Office of Biological and Environmental Research of the U.S. Department of Energy
U.S. National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017GL075619
Reference36 articles.
1. Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models
2. Batjes N. H.(1995).A homogenized soil data file for global environmental research: A subset of FAO ISRIC and NRCS profiles (Version 1.0): Working Paper and Preprint 95/10b. ISRIC ‐ World Soil Information Wageningen Netherlands.
3. Improving the representation of hydrologic processes in Earth System Models
4. Validation of SMAP surface soil moisture products with core validation sites
5. Confronting Weather and Climate Models with Observational Data from Soil Moisture Networks over the United States
Cited by 212 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hyperparameter optimization of regional hydrological LSTMs by random search: A case study from Basque Country, Spain;Journal of Hydrology;2024-09
2. Multi-step ahead prediction of lake water temperature using neural network and physically-based model;Journal of Hydraulic Research;2024-08-05
3. Advancing horizons in remote sensing: a comprehensive survey of deep learning models and applications in image classification and beyond;Neural Computing and Applications;2024-08-02
4. Deep learning insights into suspended sediment concentrations across the conterminous United States: Strengths and limitations;Journal of Hydrology;2024-08
5. Addressing spatial gaps in ESA CCI soil moisture product: A hierarchical reconstruction approach using deep learning model;International Journal of Applied Earth Observation and Geoinformation;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3