Testing of a Novel Induction Heat Treated Steel Brace with Enhanced Buckling Behaviour

Author:

Jamshiyas Shadiya1,Skalomenos Konstantinos1

Affiliation:

1. Department of Civil Engineering University of Birmingham Birmingham United Kingdom

Abstract

AbstractSteel braces are widely used to stabilize steel structures forming horizontal or vertical truss structures; however, their relatively poor buckling behaviour is often lead to overdesigned structures. Induction Heat (IH) treatment technology is a novel contactless material transformation process to effectively strengthen local areas of steel sections. Utilizing IH to increase the strength of the middle length of steel brace sections, buckling behaviour can be improved. The present study experimentally investigates the compression behaviour of the novel braces fabricated by IH‐treated circular hollow steel sections. A Digital Image Correlation (DIC) system is used to measure the experimental deformation quantities, such as axial displacements, out‐of‐plane deformations, and strain distributions along the brace length. Four specimens were tested with two set of different slenderness ratios (λ). Each set includes one conventional steel brace (CSB) and one IH‐treated steel brace (IHSB) with a stronger section at its mid‐length. The specimens were subjected to a monotonic displacement‐controlled loading history until reaching an axial compressive strain of 2.5%. It was found that buckling load can increase up to 20% in IHSBs. IH treatment was also beneficial in improving the post‐buckling behaviour of the brace. The compression strength was found to be more than double in IHSBs than in CSBs at a ductility level of 5 (ductility is defined as the ratio of the target axial displacement to the yielding axial displacement). Moreover, out‐of‐plane displacements were reduced by 28% for the IHSBs at an axial strain of 1% showing a more evenly distribution of strain demands along the brace length.

Funder

Royal Society

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference12 articles.

1. A study on the effectiveness of bracing system for lateral loading;Borthakur D.J.;International Journal of Advanced Engineering Research and Science,2016

2. Determination of fatigue design stresses for welded structures from an analysis of data;Gurney T. R.;Metal construction and British Welding Journal,1972

3. Slender Steel Columns Strengthened Using High-Modulus CFRP Plates for Buckling Control

4. Experimental and computational study of concrete filled steel tubular columns under axial loads

5. Skalomenos K.A. Kurata M. Fukutomi Y. Nishiyama M(2018).Analytical and experimental study on steel braces with stronger middle length treated by induction hardening.Eleventh U.S. National Conference on Earthquake Engineering Integrating Science Engineering & Policy 2018 Los Angeles California.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3