LEO satellite constellations configuration based on the Doppler effect in laser intersatellite links

Author:

Boumalek Kaouther1ORCID,Aris Skander1,Goh Shu Ting2,Zekavat Seyed A.3,Benslama Malek1

Affiliation:

1. University of Mentouri Brothers Constantine 1 Constantine Algeria

2. National University of Singapore Singapore Singapore

3. Worcester Polytechnic Institute Worcester Massachusetts USA

Abstract

SummaryThis paper presents low Earth orbit (LEO) satellite constellation configuration based on the performance of Doppler effect in laser intersatellite links (LISLs). It studies the impact of the LEO constellation's parameters on the performance of the Doppler effect in LISLs. The paper aims to develop LEO satellite constellation configurations that evolve LISLs with minimal Doppler shift. It evaluates the impact of the variation of the relative distance, the inclination angle of the LEO constellation orbital planes, the orbital planes number in the LEO constellation, and the altitude on the performance of Doppler wavelength shift (DWS) in LISLs, for different operating laser wavelengths (OLWs) with respect to two possible intersatellite links (ISL) connection modes within the constellation, straight ISL (n‐to‐n) and inclined ISL (n‐to‐n − 1). n is the order of the satellite in the orbital plane. Simulations are conducted to evaluate the performance of these configurations in terms of altitude, OLW, inclination angle, and the number of orbital planes. In addition, both OneWeb and Starlink constellations are studied to evaluate DWS performance. The study demonstrates that DWS decreases either with the diminution of the relative distance between linked LEO satellites, the inclination of LEO constellation, and the OLW, or with the augmentation of the orbital planes number and altitude. Moreover, the overall DWS between two LEO satellites in the proposed constellation is at least 50% lower than the constellation configuration in other literature. The paper proposes the LEO constellation's configurations that perform LISLs with less possible Doppler effect by optimizing the LEO constellation parameters that impact the Doppler effect. The result of this study helps in the early stage of LEO satellite constellation designing in terms of payload simplicity and cost.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3