Electrophilic substitution reactivity prediction of crown ether derivatives

Author:

Tian Yongpan1ORCID,Zhang Fan1,Xie Juan1,Xu Liang1,Zhao Zhuo1

Affiliation:

1. School of Metallurgical Engineering Anhui University of Technology Ma'anshan City Anhui Province China

Abstract

AbstractLithium is important for the world's economic development because it is the primary component of batteries. Crown ether derivatives are widely used for the separation and enrichment of lithium. The conformations of the designed crown ether were studied using molecular dynamics simulation. The electrophilic substitution reactivities of different conformations were analyzed by the conceptual density functional theory (CDFT) and the frontier molecular orbital theory (FMO). The analysis results show that the reactivity of the phenyl group can be increased by the π–π conjugation effect and bonded oxygen atoms. According to the reduced density gradient (RDG), the van der Waals interactions between the phenyl functional groups and methyl groups also benefit the reactivity. According to the global softness and nucleophilicity index, the reactivity of is the highest. The condensed Fukui function, condensed local nucleophilicity index, and condensed local softness show that the electrophilic substitution reactivity of is the highest. also has the largest HOMO orbital composition. The analysis results of CDFT and FMO are consistent with each other, which suggests that the Koopmans approximation is suitable for the reactivity analysis of crown ether derivatives.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Organic Chemistry,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3