Enhanced mechanical property and flame retardancy of halogen‐free PE/EVA composites through crosslinking and carbon fiber inclusion

Author:

Du Ao1ORCID,Chen Hongmei1,Chen Jie1,Wang Bo2,Cai Zeyun13,Qiu Hua‐Jun14,Xie Guoqiang15

Affiliation:

1. School of Materials Science and Engineering, and Institute of Materials Genome & Big Data Harbin Institute of Technology Shenzhen China

2. Shenzhen Joywind New Materials Co., Ltd Shenzhen China

3. Institute of Special Environments Physical Sciences Harbin Institute of Technology Shenzhen China

4. Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application Harbin Institute of Technology Shenzhen China

5. State Key Laboratory of Advanced Welding and Joining Harbin Institute of Technology Harbin China

Abstract

AbstractDue to the exceptional flame retardancy, environmental protection, cost‐effectiveness, and ease of processing, halogen‐free flame‐retardant polyethylene (PE) composites are attracting wide attention. However, the addition of halogen‐free flame retardants usually leads to significantly decreased mechanical properties of PE composites, which greatly limits its application. Herein, we report a halogen‐free flame‐retardant PE/ethylene‐vinyl acetate copolymer composite (PE/EVA) with excellent flame retardancy and mechanical properties by combining compatibilizer, crosslinking agent, and carbon fiber. The presence of compatibilizer not only improves the compatibility of halogen‐free flame retardants and matrix, but also interacts with the crosslinking agent to form a cladding structure on the surface of carbon fiber. The enhanced interaction between carbon fiber surface and matrix then results in significantly enhanced flame retardancy and mechanical properties of the composite. Specifically, adding 4 phr compatibilizer, 0.5 phr crosslinking agent, and 10 phr carbon fiber will lead to the halogen‐free flame‐retardant PE/EVA composite with a UL‐94 V‐1 level, limiting oxygen index of 27.1, and an increased tensile strength by 84.02% reaching 19.12 MPa. Moreover, further carbon fiber surface modification can further enhance the flame retardancy of the composite probably due to a synergistic flame‐retardant effect caused by the surface modified nitrogen and silicon elements. As a result, the composite achieves UL‐94 V‐0 level and the limiting oxygen index of 27.7 with well‐retained high tensile strength of 15.19 MPa. This work provides a practical strategy for enhancing the flame retardancy and mechanical property of PE‐based composite simultaneously.Highlights Compatibilizer interacts with crosslinking agent to form a cladding structure on the surface of carbon fiber. Crosslinking agent promotes the formation of chemical bonds between modified carbon fiber, compatibilizer, and matrix. Carbon fiber surface modification can enhance the flame retardancy of the composite due to the synergistic flame‐retardant effect.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3